Implicit large eddy simulations of anisotropic weakly compressible turbulence with application to core-collapse supernovae
نویسندگان
چکیده
In the implicit large eddy simulation (ILES) paradigm, the dissipative nature of high-resolution shock-capturing schemes is exploited to provide an implicit model of turbulence. The ILES approach has been applied to different contexts, with varying degrees of success. It is the de-facto standard in many astrophysical simulations and in particular in studies of core-collapse supernovae (CCSN). Recent 3D simulations suggest that turbulence might play a crucial role in core-collapse supernova explosions, however the fidelity with which turbulence is simulated in these studies is unclear. Especially considering that the accuracy of ILES for the regime of interest in CCSN, weakly compressible and strongly anisotropic, has not been systematically assessed before. Anisotropy, in particular, could impact the dissipative properties of the flow and enhance the turbulent pressure in the radial direction, favouring the explosion. In this paper we assess the accuracy of ILES using numerical methods most commonly employed in computational astrophysics by means of a number of local simulations of driven, weakly compressible, anisotropic turbulence. Our simulations employ several different methods and span a wide range of resolutions. We report a detailed analysis of the way in which the turbulent cascade is influenced by the numerics. Our results suggest that anisotropy and compressibility in CCSN turbulence have little effect on the turbulent kinetic energy spectrum and a Kolmogorov k−5/3 scaling is obtained in the inertial range. We find that, on the one hand, the kinetic energy dissipation rate at large scales is correctly captured even at low resolutions, suggesting that very high “effective Reynolds number” can be achieved at the largest scales of the simulation. On the other hand, the dynamics at intermediate scales appears to be completely dominated by the so-called bottleneck effect, i.e., the pile up of kinetic energy close to the dissipation range due to the partial suppression of the energy cascade by numerical viscosity. An inertial range is not recovered until the point where high resolution ∼ 512, which would be difficult to realize in global simulations, is reached. We discuss the consequences for CCSN simulations.
منابع مشابه
Weakly-compressible SPH and Experimental modeling of periodic wave breaking on a plane slope
Breaking waves have ability to transport large quantities of sediment and significant impact on coastal structures morphology. Hence, modeling of wave breaking is an important subject in coastal and marine engineering. In this research, the periodic wave breaking process on a plane slope is studied experimentally and numerically. Laboratory experiments were conducted to record water surface ele...
متن کاملLarge-eddy simulation of turbulent flow over an array of wall-mounted cubes submerged in an emulated atmospheric boundary-layer
Turbulent flow over an array of wall-mounted cubic obstacles has been numerically investigated using large-eddy simulation. The simulations have been performed using high-performance computations with local cluster systems. The array of cubes are fully submerged in a simulated deep rough-wall atmospheric boundary-layer with high turbulence intensity characteristics of environmental turbulent fl...
متن کاملشبیهسازی عددی شکست موج تنها بر روی ساحل شیبدار به روش هیدرودینامیک ذرات هموار نسبتاً تراکمپذیر
In this article, a numerical meshless method called Weakly Compressible Smoothed Particle Hydrodynamic (WCSPH) is used to simulate the solitary wave breaking process on the beach. The present model is a two dimensional model that considers the fluid weakly compressibility. This model solves the viscous fluid equations to obtain velocity field and density and solves the equation of state to obta...
متن کاملSubgrid-scale modeling of isotropic turbulence in compressible magnetohydrodynamic large eddy simulations
Despite the ever increasing availability of computational resources, fully resolved simulations of magnetohydrodynamic (MHD) turbulence are not going to be feasible for quite some time. For this reason, large eddy simulations (LES) have been introduced that only resolve large scales. In LES a low-pass filter is applied to the evolution equations, which introduces additional unknown terms. These...
متن کاملAn adaptive local deconvolution model for compressible turbulence
The objective of this project was the analysis and the control of local truncation errors in large eddy simulations. We show that physical reasoning can be incorporated into the design of discretization schemes. Using systematic procedures, a non-linear discretization method is developed where numerical and turbulence-theoretical modeling are fully merged. The truncation error itself functions ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015